Linear algebra -Midterm 1

1.

(a) Find $\left[\begin{array}{cc}-1 & 0 \\ 2 & -3 \\ 4 & 1\end{array}\right]+\left[\begin{array}{cc}1 & -2 \\ 0 & 1 \\ 3 & -3\end{array}\right]$. Solution: $\left[\begin{array}{ll}0 & -2 \\ 2 & -2 \\ 7 & -2\end{array}\right]$.
(b) Find the inverse of the matrix $\left[\begin{array}{ccc}1 & 0 & -1 \\ 2 & 1 & 0 \\ 2 & 1 & 1\end{array}\right]$.

Solution: $\left[\begin{array}{ccc}1 & -1 & 1 \\ -2 & 3 & -2 \\ 0 & -1 & 1\end{array}\right]$.
2. Let $A=\left[\begin{array}{ccccc}1 & 2 & 1 & -1 & 0 \\ 2 & 4 & 1 & -1 & 1 \\ 0 & 0 & -1 & 1 & 1 \\ -1 & -2 & 0 & 0 & 3\end{array}\right]$, and suppose that if we row reduce A we get the matrix $\left[\begin{array}{ccccc}1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
(a) Find a basis for the column space of A.

Solution: $\left\{\left[\begin{array}{c}1 \\ 2 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{c}1 \\ 1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 3\end{array}\right]\right\}$.
(b) Find the rank of A.

Solution: The rank is 3 .
(c) Find a basis for the row space of A.

Solution: $[1,2,0,0,0],[0,0,1,-1,0],[0,0,0,0,1]$.
(d) Find a basis for the nullspace of A.

Solution: $\left\{\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1 \\ 0\end{array}\right]\right\}$.
3. Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be a linear transformation so that $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}-2 \\ 4\end{array}\right]$ and $T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=\left[\begin{array}{c}1 \\ -2\end{array}\right]$.
(a) Find the standard matrix representation of T.

Solution: $\left[\begin{array}{cc}-2 & 1 \\ 4 & -2\end{array}\right]$.
(b) Find a basis for the kernel of T.

Solution: $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\}$.
(c) Find a basis for the range of T.

Solution: $\left\{\left[\begin{array}{c}1 \\ -2\end{array}\right]\right\}$.
4.
(a) Is $\{[x, y, z] \quad: \quad x+y+z=1\}$ a subspace of \mathbf{R}^{3} ? Give a reason for your answer.

Solution: It is not a subspace, since $[1,0,0]$ is in the space, but $2[1,0,0]=[2,0,0]$ is not, so it is not closed under scalar multiplications.
(b) Find the dimension of the subspace $\{[x+y, z, 0]: x, y, z \in \mathbf{R}\}$.

Solution: The dimension is 2 .
(c) Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be rotation about the origin by 90 degrees, clockwise. Find the standard matrix representation of T.
Solution: $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$
(d) Is the function $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ given by

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1} x_{2} \\
x_{2}
\end{array}\right]
$$

a linear transformation? Give a reason for your answer.
Solution: It is not a linear transformation. $T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, but $T\left(\left[\begin{array}{l}2 \\ 2\end{array}\right]\right)=\left[\begin{array}{l}4 \\ 2\end{array}\right]$, so

$$
T\left(2\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right) \neq 2 T\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right) .
$$

